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Editorial
On the 17th May 2002, the Dáil constituencies of Meath,
Dublin North and Dublin West used an experimental system
for electronic voting. It is expected that this system will be
used exclusively for local and national elections in the Irish
Republic in the near future.

Of course, the three constituencies used the same electoral
rules as in the other 40 — essentially a hand-counting system
which has at least one ‘problem’ in that the result can depend
upon the order in which papers are transferred on a surplus.
Examination of such issues has traditionally always been
hampered by the lack of complete information of all the
preferences expressed by the voters.

We now have a significant step forward for electoral studies
since the Irish electronic voting results includes the complete
data input to the electronic counting software. One can
reasonably expect future issues of Voting matters to analyse
this data.

The first paper in this issue is indeed an analysis of Irish
election data, but only uses the result sheets. Philip Kestelman
shows statistically significant bias according to the alphabetic
position (on the ballot paper). I might add that even a casual
inspection of the full data mentioned above shows a tendency
for the final few preferences to be in strictly ascending or
descending order. 

In the second paper, Eivind Stensholt considers the problem
when additional support for a candidate results in that
otherwise elected candidate not being elected. This property
of non-monotonicity applies even to the case of electing a
single candidate, as shown in this paper. On the other hand,
the paper indicates that it is relatively rare.

In the third paper, Markus Schulze considers an algorithm for
electing candidates with preference voting proposed by
Professor Sir Michael Dummett. Sir Michael has chosen not
to respond to the criticisms made.

In the last paper, David Hill and Simon Gazeley produce a
new STV-like algorithm which merges the ideas of Condorcet
and STV. The advantage of this algorithm is to avoid the
property of all conventional STV algorithms of premature
exclusion, such as for a universal second-choice candidate.
On the other hand, this method has the disadvantage of later
preferences could possibly upset earlier ones in rare cases.

McDougall Trust: STV Resources CD

A proof copy was prepared in February, but the publication
date has not yet been agreed.

Brian Wichmann.



Positional Voting Bias
Revisited
Philip Kestelman

Introduction
It is widely supposed that candidates appearing high on
ballot-forms enjoy a considerable electoral advantage.   In a
highly influential paper on the 1973 General Election to the
Irish Dáil, by multi-member Single Transferable Voting
(STV), Robson and Walsh (1974) observed that Deputies
(TDs) over-represented candidates with A-C surnames.
Compared to randomly sampled Irish electors, “The under-
representation of M-O names among politicians is very
striking” .

Proportionality conventionally measures the relationship
between numbers of Party votes and seats (regardless of
candidates).  Despite a probable age bias, we are hardly
concerned that seats considerably over-represent first
preferences for incumbent candidates; let alone that
incumbents are far more likely to be elected than
‘excumbents’ (non-incumbents).

On the other hand, we are concerned not only that seats
should proportionally represent votes for women candidates,
but also that seats should be proportional to women
candidates, in the interests of Parliament representing
society.  In respect of ballot-form position, we are primarily
concerned with the relationship between numbers of
candidates and seats (regardless of votes), by surname
initial, when candidates are listed surname-alphabetically on
ballot-forms.

Electability
This article mainly evaluates positional voting bias in the
last 12 general elections in the Irish Republic (1961-97).
Electability is quantified in terms of an Electability Index
(S%/C%): the ratio of a seat-fraction (S%) to a candidate-
fraction (C%); and of a Relative Electability Ratio: the ratio
between specified Electability Indices.

Aggregating all 12 elections (Total S/C = 1,875/4,594),
Upper/Lower half surname A-J/K-Z Electability Indices
were 1.11/0.88, with a statistically highly significant
Relative Electability Ratio of 1.26 (P<0.001). By
comparison, alphabetically Upper/Lower half forename
A–L/M–Z Electability Indices were 1.01/0.99, with an
insignificant Relative Electability Ratio of 1.01 (P > 0.05).

Cumbency
In 1961-97, most incumbent candidates (S/C = 1,404/1,687
= 83 percent) were re-elected; whereas few excumbents
(471/2,907 = 16 percent) were elected, rendering them more

susceptible to alphabetic disproportionality.  Surname A-J/
K-Z Electability Indices (S%/C%) were 1.01/0.98 for
incumbents, and 1.15/0.86 for excumbents, with Relative
Electability Ratios of 1.03 (P>0.05) and 1.34 (P<0.05),
respectively.

The last 12 Irish general elections have consistently over-
represented excumbent candidates with A-C surnames;
under-representing those with K-M surnames (overall S%/
C%, 1.27 and 0.81: Table A).  Even combining the 12
elections into three quartets leaves considerable variability
in both forename and surname Electability Indices.

Table A:  Excumbent Electability Index, by Elections
and Forename/Surname initial letter: Irish Republic,
1961-97 (12 general elections: Dáil Éireann, 1962-
98).

*        P < 0.05

In 1961-73, excumbent forename and surname alphabetic
biases were equally convincing (P<0.05); but insignificant
subsequently.   Ironically in 1973, the Relative Electability
Ratio for A-L / M-Z forenames (2.76) exceeded that for A-J
/ K-Z surnames (1.57)!   The pitfalls of generalising from a
single election are manifest.

District Magnitude
Surname disproportionality was virtually confined to four-
and five-member STV constituencies: only three-member
constituencies returned TDs more-or-less faithfully
reflecting excumbent surnames (Table B).  Magnitude-
specific surname A-J/K-Z Relative Electability Ratios
proved statistically insignificant, but much closer to unity in
three-member constituencies (1.25, 0.89 and 0.72) than in
four-member constituencies (1.62, 1.36 and 1.51), or in
five-member constituencies (2.05, 1.77 and 1.42), in
1961–73, 1977–82 and 1987–97, respectively.
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Name Elections: Electability Index (S% / C%)

Initial letter 1961-97 1961-73 1977-82 1987-97

A-F 1.04 1.34 1.11 0.88

Forename G-L 1.08 1.08 0.98 1.16

M-P 1.02 0.82 1.14 1.08

Q-Z 0.82 0.84 0.72 0.85

Ratio (A-L/M-Z) 1.14 1.42* 1.10 1.01

A-C 1.27 1.38 1.19 1.24

Surname D-J 1.04 1.04 1.06 1.04

K-M 0.81 0.73 0.84 0.83

N-Z 0.92 0.91 0.91 0.94

Ratio (A-J/K-Z) 1.34* 1.47* 1.29 1.27



Table B: Excumbent Electability Index, by District
Magnitude (seats per constituency) and Surname initial
letter: Irish Republic, 1961-97 (12 general elections:
Dáil Éireann, 1962-98).

*P < 0.05        +Including a few two-member constituencies. 

District Canditude and Position
Interestingly, the 1961-97 aggregate, excumbent Relative
Electability Ratio by surname (A-J/K-Z) proved identical with
that by ballot-form position (Upper/Lower = 1.34: P<0.05).
Like the surname A-J/K-Z Relative Electability Ratio with
district magnitude (the number of seats per constituency), the
positional Upper/Lower Relative Electability Ratio increased
with district ‘canditude’ (the number of candidates per
constituency: Table C).

Table C: Excumbent Electability Index, by  District
Canditude (candidates per constituency) and Ballot-
form Position: Irish Republic, 1961-97 (12 general
elections: Dáil Éireann, 1962-98).

*  P < 0.05     +Excluding odd-Canditude mid-candidates. 

Party Policy
Both main political parties in the Irish Republic (Fianna Fáil
and Fine Gael) have staunchly denied over-nominating
candidates appearing high on ballot-forms9.  Table D analyses
the surname-alphabetic distribution of FF and FG excumbent
candidates, compared with other (non-FF + FG) excumbents,
in terms of a Relative Nomination Index, over time.

Table D: Two Main Party Excumbent Relative
Nomination Index, by Elections and Surname initial
letter: Irish Republic, 1961-97 (12 general elections:
Dáil Éireann,  1962-98).

***      P < 0.001

Evidently since 1977, both main parties have greatly over-
nominated A-C surname candidates (and/or other parties have
under-nominated them); with the honours evenly divided
between Fianna Fáil and Fine Gael. Relative to the
publication of Robson and Walsh (1974), the timing may not
have been entirely coincidental!

Electorate
Robson and Walsh (1974) observed that the alphabetic
distribution of surname initial letters differed insignificantly
between randomly sampled Irish electors and excumbent
candidates at the 1973 Irish General Election.   Presumably
nowadays, the surname initials of electors are rather better
represented by excumbent, non-FF + FG candidates; and
Table E compares overall seat-fractions, by surname initial,
with excumbent, non-FF + FG candidate-fractions.

This Surname Concentration Index (Total S%/Excumbent,
non-FF + FG C%) highlights Dáil Éireann over-representing
A-C surnames in the Irish electorate; while under-representing
K-M surnames. Despite the lower surname A-J/K-Z
Concentration Ratio since 1987 (1.35), A-C surname electors
remain over twice as likely as K-M surname electors to
become TDs.

Table E: Surname Concentration Index, by Elections and
Surname initial letter: Irish Republic, 1961-97

 (12 general elections: Dáil Éireann, 1962-98).

**       P < 0.01                * **      P < 0.001
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Surname Magnitude: Electability Index (S% / C%)

Initial letter Total+ 3 4 5

A-C 1.27 1.10 1.51 1.21

D-J 1.04 0.87 0.98 1.28

K-M 0.81 1.05 0.66 0.73

N-Z 0.92 0.98 0.96 0.79

Ratio (A-J/K-Z) 1.34* 0.96 1.51 1.64

Ballot-form Canditude: Electability Index (S% / C%)

Position+ Total 4-8 9-11 12-21

Top 1.30 1.22 1.26 1.41

Upper-middle 0.98 0.86 1.06 1.01

Lower-middle 0.90 1.15 0.91 0.76

Bottom 0.83 0.83 0.81 0.86

Ratio (Upper/Lower) 1.34* 1.13 1.37 1.49

Elections: Relative Nomination Index

Surname (Fianna Fáil +Fine Gael C%/ Other C%)

Initial letter 1961-97 1961-73 1977-82 1987-97

A-C 1.46 1.07 1.63 1.57

D-J 0.96 1.02 1.13 0.84

K-M 0.92 1.09 0.79 0.87

N-Z 0.81 0.85 0.69 0.92

Ratio (A-J/K-Z) 1.35*** 1.08 1.82*** 1.25

Elections: Surname Concentration Index

Surname (Total S% /Excumbent, non-Fianna Fáil +Fine Gael C%)

Initial letter 1961-97 1961-73 1977-82 1987-97

A-C 1.65 1.56 1.66 1.58

D-J 1.01 1.13 1.13 0.91

K-M 0.70 0.76 0.63 0.73

N-Z 0.85 0.68 0.85 0.99

Ratio (A-J/K-Z) 1.65*** 1.85*** 1.86*** 1.35**



Other STV Elections
Compared to the last 12 Irish general elections, with a total
surname A-J/K-Z Relative Electability Ratio of 1.26
(P<0.001), the last five European elections in the Irish
Republic (1979-99: Total S/C = 75/234) have yielded a
higher but statistically insignificant surname A-J/K-Z
Relative Electability Ratio of 1.37 (P > 0.05) 5 .

On the other hand, the last five Irish Local Elections
(1979–99: Total S/C = 4,918/10,250) disclosed a lower
surname A-J/K-Z Relative Electability Ratio of 1.12
(P<0.001)3.  Perhaps better acquainted with local
government candidates,  voters discriminate more
individually; numbering their preferences regardless of
alphabetical order.

At the 1973 Assembly Election in Northern Ireland, Robson
and Walsh (1974) attributed eight out of 78 Seats to
positional voting bias.   Yet at the 1998 Northern Ireland
Assembly Election (Total S/C = 108/296), the surname A-J/
K-Z Relative Electability Ratio fell below unity
(0.87: P>0.05)4.  Certainly, parties are more sharply
differentiated in Northern Ireland than in the Irish Republic.

Discussion
Using forenames as controls, surname-alphabetic
electability valuably measures voters’ lack of discrimination
between candidates within parties.   Neither voters nor the
Irish electoral system (STV) can be reproached for any
positional voting bias.

However, Dáil Éireann remains surname-alphabetocratic,
over-representing candidates with A-C surnames, while
under-representing excumbents (non-incumbents) with K-M
surnames (Table A: compare Table E): especially in
constituencies with over three seats (Table B), and/or over
eight candidates (Table C).

Perhaps aware of Robson and Walsh (1974), Ireland’s two
main parties (Fianna Fáil and Fine Gael) have apparently
over-nominated A-C excumbents (notably since 1977:
Table D).   However, thus acting on the belief of increased
electability may itself increase A-C surname over-
representation: aggregating the last 12 Irish general
elections (1961-97), excumbent S%/C% for FF + FG (1.67)
was considerably higher than for other parties (0.43). 

Reassuringly, aggregating all 12 general elections (1961-
1997), the excumbent Surname Relative Electability Ratio
(S/C ratio: A-J/K-Z=1.34 overall) proved significantly
higher for FF+FG (1.28: P<0.05) than for the other
candidates (1.03: P>0.05). however, it remains unclear
whether the two main parties have benefited from A-C over-
nomination.

Darcy and McAllister (1990) found “no evidence for
position advantage for political parties in any election” .
Their review concluded that positional voting bias may be
eliminated by removing its causes: notably, compulsory
voting; completion of all preferences; and ballot-forms not
indicating candidates’ Party affiliation (as in Ireland before
19657).

On the strength of the 1973 Irish General Election, Robson
and Walsh (1974) advocated randomising the order of
candidates on ballot-forms.  Citing Robson and Walsh
(1974), Sinnott8 suggested that the problem could “easily be
eliminated by arranging the names in a number of different
randomised orders on different sets of ballot papers” .

At the Dublin High Court in 1986, Mr Justice Murphy
accepted that candidates with surname initials high in the
alphabet were over-represented but, noting that alphabetic
order helped voters to find candidates, he found it
constitutional9.  Indeed, the voter’s predicament is
paramount; and to avoid the palpable frustrations of
randomised ballot-forms in locating preferred candidates, a
reasonable compromise might be to print half the ballot-
forms in surname-alphabetic order, with the other half in the
reverse order — if positional voting bias really matters.

Acknowledgement
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significance was calculated by combining election-specific,
one-tailed exact two-by-two table probabilities6.
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Nonmonotonicity in AV
E Stensholt

Eivind Stensholt is from the Norwegian School of Economics
and Business Administration

Introduction
Nonmonotonicity arises with STV when apparent additional
support for a candidate, A, at the expense of another
candidate, C, causes a third candidate, B, to be elected.
Without the additional support, A would be elected. Thus the
additional support actually costs A the election. This
unfortunate property in the standard variations of STV is
linked to the elimination of candidates in the counting
process6, and it is unavoidable unless some compromise is
made with the principle that a voter' s later preferences cannot
influence the fate of the voter' s earlier preferences.

How frequently will it happen that a candidate is not elected,
but might have been elected if some of his or her support had
gone to another candidate instead? That depends on the voters'
behaviour. Based on standard assumptions on the distribution
of voter preference, modified by empirical evidence of voter
behaviour, the frequency is estimated for elections in which 1
candidate is elected from 3. This is the Alternative Vote (AV),
a single-seat version of STV.

It is also shown how the nonmonotonicity is related to the
Condorcet paradox in which one majority prefers B to A,
another majority prefers A to C, and a third majority prefers C
to B. In all elections considered, each voter is assumed to give
a complete preference list.

For example, consider an election (from a simulation with
10000 voters) with

 475 ABC
3719 ACB
 390 CAB
2110 CBA
  41 BCA
3265 BAC

No candidate has 50% of the first preference votes. C, with
only 2500 first preference votes is eliminated, and finally B
defeats A with 5416 votes to 4584. However, if x of the
ACB-voters vote “strategically” CAB instead, the election
may turn out differently. Then the profile is

 475 ABC
3719−x ACB
 390+x CAB
2110 CBA
  41 BCA
3265 BAC

If x > 806, C with 2500+x overtakes B with 3306, and if
x<888, A is still ahead of B with 4194−x to 3306. Thus, with
806 < x < 888, B gets eliminated, and finally A defeats C with
7459−x votes to 2541+x.

The example also shows the Condorcet paradox of cyclic
majorities. In pair-wise encounters A defeats C with 7459−x to
2541+x, C defeats B with 6219 votes to 3781, and B defeats A
with 5416 votes to 4584. However, in real elections with 3
candidates cyclic majorities become very rare as the number
of voters increases. One indicator of unrealism is that the
cyclic order ABCA receives only 475+390+41+x = 906+x
votes while ACBA receives 3719+2110+3265−x = 9094−x
votes. In real elections the votes are distributed in the 6
categories in a more harmonious way.

If nonmonotonicity occurs in a real election, the scenario is
most likely that there is a plurality winner, A (with the largest
number of first preference votes), another Condorcet winner,
B (who defeats each other candidate in pair-wise encounters),
and a third candidate, C (who is last in first preference votes).
Such an example, from the same simulation, is

2996 ABC
1122 ACB
 875 CAB
2046 CBA
1431 BCA
1530 BAC

Here C is eliminated and B wins the AV-election. If x voters
switch from ACB to CAB, and 40 < x < 648, then B is
eliminated and A wins. It turns out that if AV is modified and
A declared winner in the few cases like this, nonmonotonicity
is eliminated. Instead, however, another principle will be
violated: B may win by a suitable vote transfer from BAC to
BCA.

3-candidate elections may be classified according to how well
the “electoral cake model” in Stensholt5 may be fitted; the
figure on page 7 shows a good fit. The model may be fitted
quite well to most real elections. When simulated elections are
classified, election P is considered more “realistic” than
election Q if the model fits P better than Q. When better fit,
i.e. more “realism”, is demanded, the frequency of the
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Condorcet paradox will approach 0. Nonmonotonicity,
however, occurs in about 0.90% of all simulated “realistic”
elections. Two real elections (37 candidates, 63 voters) and
(14 candidates, 115 voters) have been checked, with
nonmonotonicity in, respectively, 0.66% and 1.10% of the
candidate triples.

A description of nonmonotonicity by
means of inequalities
A possible preference distribution P in an election with 3
candidates, A, B, and C (a profile in the social choice
vernacular), consists of a sequence of 6 non-negative
numbers.

P = (p  q  r  s  t  u),

These are the numbers (absolute or relative) of voters with
preference ranking respectively: ABC, ACB, CAB, CBA,
BCA, BAC.

If x of the ABC-voters and y of the ACB-voters change to
vote CAB, there is a new profile Q:

 Q = (p−x  q−y  r+x+y  s  t  u).

Nonmonotonicity occurs if B is AV-winner in P and A in Q
despite the natural expectation that the candidate A is
weaker in Q than in P. The story is told in 9 inequalities.

            r+s+t+u > p+q (1)

           p+q+r+s > t+u (2)

                    p+q > r+s (3)

                     t+u > r+s (4)

                 s+t+u > p+q+r (5)

p+q+t+u−(x+y) > r+s+(x+y) (6)

        r+s + (x+y) > t+u (7)

        p+q−(x+y) > t+u (8)

    u+p+q−(x+y) > r+s+t + (x+y) (9)

A translation to non-mathematical language links the
inequalities to the AV rules. (1, 2): In P, neither A nor B have
50% of the first preference votes. (3, 4): In P, C has the
lowest number of first preference votes. (5): In P, B wins
over A (after elimination of C). (6): In Q, C does not reach
50% first preference votes. (7): In Q, C passes B in first
preference votes. (8): In Q, A keeps more first preference
votes than B. (9): In Q, A wins over C (after elimination of
B).

However, the mathematical version (1-9) is easier to
analyse. Write (7, 8, 9) equivalently as

min[p+q−t−u, (u+p+q−r−s−t)/2] > x+y > t+u−r−s     (10)

Thus numbers x and y satisfying (7, 8, 9) exist if and only if
(11) and (12) hold:

            p+q+r+s > 2t+2u (11)

            p+q+r+s > 3t+u (12)

Moreover, (1), (2), (3), and (6) are redundant because of (5),
(11), (4 and 8), and (9), respectively. Therefore the p+q
supporters of candidate A can turn defeat in P to victory in
Q if and only if (4, 5, 11, 12) all hold. Then x+y of them
vote “strategically” CAB, with x+y as in (10).

A profile where a candidate may be helped by being ranked
lower in some ballots without any other change in any
ballot will be called a nonmonotonic profile for the election
method considered. In discussing various election rules, it is
also useful to have an “absolute” definition: A profile is
then nonmonotonic if it is so for AV. A monotonic election
method is one without nonmonotonic profiles. AV, and the
usual STV-variations are nonmonotonic because of the
elimination rules. By the criteria (4, 5, 11, 12)

                     p+q> t+u > r+s (13)

Thus, in P, A is plurality winner (first past the post), while B
beats A and A beats C in pair-wise comparisons by (5) and
(9). This we will call nonmonotonicity of type ABC. There
are six types of nonmonotonic profiles: ABC, ACB, CAB,
CBA, BCA, and BAC.

Connection to the Condorcet paradox;
a geometric description
The Condorcet paradox occurs together with ABC-type
nonmonotonicity when also C beats B in pair-wise
comparison, i.e.

                q+r+s > t+u+p (14)

Otherwise B is the Condorcet winner, i.e. B defeats each
opponent in a pair-wise contest. The strategic voting of the
x+y voters who honestly support A is then designed to take
the AV victory away from Condorcet winner B to plurality
winner A. Define E, F, G, H, K as functions of the profile:

E=−r−s+t+u

F=−p−q−r+s+t+u

G= p+q+r+s−2t−2u        (15)

H= p+q+r+s−3t−u

K=−p+q+r+s−t−u

When all possible profiles are standardized, e.g. to
p+q+r+s+t+u=12, as in the table below, they form a 5-
dimensional simplex with 6 corners — a higher dimensional
analogue of the familiar 3-dimensional simplex
(tetrahedron)  with  4  corners  and  4  triangular  sides.  
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By (4, 5, 11, 12) the nonmonotonic profiles of ABC-type form
a convex subset S of this simplex, given by

E > 0, F > 0, G > 0, H > 0 (16)

The Condorcet paradox occurs if K > 0 too. The profiles in
the table are the corners of the closure of S and have non-
negative E, F, G, H.

In the right hand column, ε = ε(P) is a continuous function of
the profile P, defined in Stensholt5. By its definition, 0 < ε <
3√3/4π ≈ 0.4135. Generally ε is well below 0.01 in profiles
from real elections with many voters. Any profile P satisfying
(16) may be written as

P = k0l·P01 + k02·P02 + k03·P03 + ... + kl6·Pl6       (17) 

with non-negative kj and k01 + k02 + k03 +... + kl6 = 1.

To a profile P = (p q r s t u) we may assign a twin profile P*  =
(q p r s t u). Thus P**=P and Pi*  = Pi+8, i=1, 2,.., 8. If P is a
nonmonotonicity profile of type ABC, so is P* . With P as in
(17), then

P*=k09·P01+k10·P02+.. +k16·P08+ k01·P09+k02·P10+..+k08·P16, (18)

K(0.5·[P + P* ]) = 0.5·[K(P) + K(P*)] = −2·(k07 + k08 + kl5 + kl6) ≤ 0
(19)

Thus the profile 0.5 [P + P* ], midway between P and P*, will
never give the Condorcet paradox, but it is on the borderline if
and only if k07 = k08 = kl5 = kl6 = 0 Somewhere between 1/3
and 2/3 along the line segment from P to P* , K = 0. From the
K-column in Table 1 it is clear that, with many voters,
somewhere between 33% and 50% of all nonmonotonicity
profiles also have a Condorcet cycle. However, they are not
all equally likely to occur in real elections.

Simulation and reality
One million random 3-candidate profiles were generated with
uniform probability in the simplex. The distribution is known
as the Impartial Anonymous Culture (IAC). The IAC also
depends on the number of voters, but the simulation
corresponds to the limit case of infinitely many voters.
Actually about 100 voters would give quite similar results.

In 3621 of the IAC-generated profiles were E>0, F>0, G>0,
H>0. As there are six nonmonotonicity types, about
6×0.3621% ≈ 2.17% of the profiles are nonmonotonic.
Among these 3621, 1602, i.e. ≈ 44.24% also had K>0,
indicating a Condorcet cycle in the profile: A beats C beats B
beats A. For comparison, 6.25% of all IAC-profiles have a
Condorcet cycle 2,5.

In real elections the cycle frequency is much lower. That is
due to a structure in the profiles, which may come from the
voters having some common perception of the “political
landscape” although they have placed themselves in different
positions and rank the candidates accordingly 5.

Imagine that the voters are distributed with uniform density in
a circular disc, that candidates A, B and C are among them,
and that a voter ranks the candidates according to their
distance from the voter' s position. In a pair-wise comparison
between A and B, B wins if and only if B is closer than A to
the circle centre. A and B divide the voters between them with
the mid-normal to the line segment AB as dividing line.
Similarly the mid-normals for BC and AC divide the disc. The
three candidates split the “voter cake” in six pieces by three
straight cuts through one common point, each piece getting an
area proportional to the number of votes with the
corresponding ranking of the candidates. In a model like this,
the Condorcet paradox can never occur except in a degenerate
form with all cuts through the circle center, and p=s, q=t, r=u.

Empirically, the electoral cake model fits reasonably well for
3-candidate profiles from real elections with a large number
of voters. That is why the Condorcet paradox is rare. The
function ε(P) measures the deviation of P from the model. For
the examples in the introduction,

7

Voting matters, for the technical issues of STV,   June 2002                                                                                                 Issue 15

Figure giving the profile (2996 1122 0875 2046 1431 1530)
which fits well with the “electoral cake” model.

A

B

C

2996

1530

1431

2046

875

1122

Profile p q r s t u E F G H K 100ε
P01 4 0 2 2 2 2 0 0 0 0 –4 5.61

P02 4 0 2 2 0 4 0 0 0 4 –4 0.00

P03 4 0 0 4 2 2 0 4 0 0 –4 0.00

P04 4 0 0 4 0 4 0 4 0 4 –4 0.00

P05 6 0 0 3 3 0 0 0 3 0 –6 0.00

P06 6 0 0 3 0 3 0 0 3 6 –6 0.00

P07 6 0 0 2 2 2 2 0 0 0 –8 0.00

P08 6 0 0 2 0 4 2 0 0 4 –8 0.00

P09 0 4 2 2 2 2 0 0 0 0 4 5.61

P10 0 4 2 2 0 4 0 0 0 4 4 20.69

P11 0 4 0 4 2 2 0 4 0 0 4 20.69

P12 0 4 0 4 0 4 0 4 0 4 4 41.35

P13 0 6 0 3 3 0 0 0 3 0 6 32.54

P14 0 6 0 3 0 3 0 0 3 6 6 39.77

P15 0 6 0 2 2 2 2 0 0 0 4 17.27

P16 0 6 0 2 0 4 2 0 0 4 4 38.72



ε(0475, 3719, 0390, 2110, 0041, 3265) = .174035768

ε(2996, 1122, 0875, 2046, 1431, 1530) = .000000108
(see figure).

Among the simulation profiles with small ε(P), about 0.15%
were nonmonotonic of ABC-type. This suggests an estimate
of 0.90% for the probability for nonmonotonicity in a
candidate triple in real elections with many voters.

In an election with 63 voters and 37 candidates at the
author' s institution, 51 of the 37×36×35/6 = 7770 triples
were nonmonotonic, a fraction of 0.66%. In these 51 triples,
the Condorcet paradox occurred only 7 times, i.e. much less
than the 44.24% in the full IAC-simulation. In another
election in the same place, with 115 voters and 14
candidates there were 4 nonmonotonicity triples out of
14×13×12/6 = 364, i.e. 1.10% and the Condorcet paradox
occurred in none of them. Comparison with the simulation
requires some caution since the triple profiles in an election
with many candidates cannot be assumed stochastically
independent.

Conclusion
In an election with 3 candidates, A, B and C, let A be
plurality winner. In the vast majority of elections, there will
also be a unique Condorcet winner. If A also happens to be
Condorcet winner, A wins the AV-election. That cannot be
very controversial.

So assume B is Condorcet winner, which means that B wins
if A or C is eliminated. B may win with very few first
preference votes in the ballots, but electing B means that
there are no “wasted votes”. The “plurality ideology” may
also be modified to avoid wasting votes by eliminating B;
then the supporters of B are allowed to influence the choice
between A and C. An election method that always eliminates
a Condorcet winner who is not also a plurality winner, may
seem strange. However, it would, arguably, be a democratic
improvement of the plurality method that is in wide use
today. It preserves the “plurality ideology” as well as
possible, preferring to let centre voters decide between
“right” and “left” rather than filling an assembly with centre
politicians.

AV can be seen as a compromise between the “plurality
ideology” and the “Condorcet ideology”. There are two
possibilities.

(I) If B has the smallest support in terms of first
preference votes, i.e. p+q > r+s > t+u, then B is
eliminated.

(II) If B is number 2 in terms of first preference votes,
i.e. p+q > t+u > r+s, then B is the AV-winner.

Nonmonotonicity occurs in (II) if A has a number of surplus
first preference votes that could be transferred to C in a way
that benefits A. Such transfer is not a part of AV, but this can
be remedied in the spirit of STV if the transfer rule is
extended. When (16) holds, let the necessary number of
surplus votes be transferred from voter categories ABC and
ACB to CAB if this lets C become number 2 in terms of
first preference votes, and still lets A win against C after
elimination of B. This transfer of first preference votes from
A to C involves only voters who prefer A to B (categories
ABC, ACB, CAB), and it may be implemented in the
counting process when it helps A to win instead of B.

An obvious argument against such a procedure is that it
occasionally may violate the cherished principle that my
second preference should never hurt my first preference. To
see this, consider first standard AV. Then C is eliminated
after examination of first preferences only. The second
preferences of C' s supporters become available, and either
A (plurality winner) wins or B (Condorcet winner if one
exists) wins. Among the conditions in (16) for an extra
transfer of votes from A to C, the three first only involve
first preference votes: p+q, r+s, t+u. The inequality H > 0
requires information about t and u, i.e. about the second
preferences of B' s supporters. This allows for strategic
voting on behalf of B. Let z voters move from BAC to
BCA. Then according to (15) the requirement H > 0 is
sharpened to

p+q+r+s−3t−u−2z>0.

The strategy is to break this condition, which is achieved if
and only if

p+q+r+s−3t−u ≤ 2z ≤ 2u

Such strategy is possible if and only if

p+q+r+s+t+u ≤ 4(t+u),

i.e. if and only if B has at least 25% of the first preference
votes. This will, however, always be the case when the extra
transfer rule is invoked, because by (1) A has less than 50%
of the first preference votes and by (4) B has more first
preference votes than C. AV with extra transfer violates the
principle exactly when standard AV violates monotonicity.

In 3-candidate elections, voters may be offered one of two
guarantees:

1) You can never hurt a candidate by an upwards move;

2) You can never hurt a candidate by a change in the
subsequent ranking.

In about 99% of the elections, the profile is monotonic.
Then AV and AV with extra transfer satisfy both 1) and 2),
as no extra transfer is done. In the remaining cases, standard
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AV picks the Condorcet winner and violates 1) but not 2),
while AV with extra transfer picks the plurality winner and
violates 2) but not 1). Which of the two guarantees is then
most important?

With more candidates, it becomes more complicated to study
nonmonotonicity in AV. With 5 candidates, A, B, C, D, and E,
there are 10 triples, and each candidate takes part in 6 triples:

{A,B,C}, {A,B,D}, {A,B,E}, {A,C,D}, {A,C,E},
{A,D,E}, {B,C,D}, {B,C,E}, {B,D,E}, {C,D,E}.

After all but 3 candidates are eliminated, there is a final triple,
say {A,B,C}. If AV is adopted in more than 600
constituencies, as in a Westminster election, there will
generally be some with nonmonotonicity in {A,B,C}. How
bad will criticism from frustrated supporters of a non-elected
plurality winner in such cases be for people' s trust in standard
AV?

If A, B and C are much stronger than all other candidates, it
may be enough to implement the extra vote transfer in
{A,B,C} in order to cope with most nonmonotonic profiles.
Nonmonotonicity is reduced, at a price: How bad will
criticism from frustrated supporters of a non-elected
Condorcet winner in such cases be for people' s trust in AV
with extra transfer?

The purpose of elimination is to find the opponent for A in the
final pair, so B or C must be eliminated. The extended transfer
rule only adjusts the border between elimination of B and
elimination of C. Is an election of B due to honest first
priority from A' s supporters more tolerable than election of A
due to honest subsequent ranking from B' s supporters?

Can we achieve monotonicity with more than 3 candidates, at
a reasonable price? Perhaps a recursive idea may work.
Assume that the set of profiles S with n candidates has been
subdivided into n subsets S = Sl ∪ S2 ∪ ... ∪ Sn, so that
candidate i wins with profile in Si and that this election
method is monotonic. With n+1 candidates left, eliminate Z
with the lowest number of first preference votes. If that leads
to a profile in SY and X ≠ Y, then allow an extra  transfer of
first votes from X to Z or even to more candidates in order to
eliminate another candidate and obtain an n-candidate profile
i Sx. The possibility of saving more candidates than Z from
elimination by an extra transfer raises the question of whether
X is uniquely defined.

A more radical measure is to count in each triple separately,
implementing the extra transfer. “Triple-AV” then gives a
candidate one point for a triple victory, and achieves
monotonicity. It is similar to Copeland' s method1,3,4, which
gives one point for each victory in a pair-wise comparison and
avoids Condorcet cycles. On the other hand, the price for
monotonicity with triple-AV may well be too high in terms of
violations of the principle.

An axiomatic study of election theory reveals some basic
impossibilities. Certain combinations of nice properties
cannot be realized simultaneously in one election method. To
achieve monotonicity, one must sacrifice the principle. On the
other hand, only in the few cases where (16) holds, will triple-
AV find another triple winner than standard AV.

Three papers in Voting matters6,7,8 deal with nonmonotonicity
and related problems. One theme is the axiomatic
understanding of election methods: which combinations of
desirable properties are theoretically incompatible? That kind
of knowledge is important for everyone concerned with “how
to choose how to choose”. An axiomatic approach, however,
needs a clearly formulated and manageable conceptual frame.
As part of this frame, it must be clearly stated what kind of
preference relations the voters are allowed to express. One
may restrict ballots to be complete, or to conform to a linear
listing of the alternatives (single-peak condition), etc. Within
this frame the axiomatic investigator must take into account
all possible profiles without any extra screening against
unrealistic profiles. Even a highly concocted profile may be a
counter-example that kills a hypothesis; lack of realism is no
objection if the profile formally is within the axiomatic frame.
According to Stensholt5 a bound on the function ε(P) of the 3-
candidate profile P is useful to screen off most of the
unrealistic profiles generated in a simulation. However, a
criterion like ε(P) < 0.01 does not seem suitable for axiomatic
treatment. Axiomatics must be followed up by other
approaches, e.g. comparisons of election methods on
simulated and empirical data.
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On Dummett's “ Quota
Borda System”

M Schulze

Markus Schulze is a physicist and mathematician from
Germany

In two books1,2, in his submission to the Jenkins
Commission3, and at a number of conferences, Michael
Dummett has promoted a preferential voting method where
one successively searches for solid coalitions of increasing
numbers of candidates and where, when one has found such
a solid coalition, one declares the candidates with the best
Borda scores elected. Dummett calls his method “Quota
Preference Score” (QPS) or “Quota Borda System” (QBS).
He writes that his method “has never been in use, but was
voted the best at a conference on electoral reform held in
Belfast with representatives of all parties” 3. In his book
Voting Procedures, he describes this method as follows
(where v is the number of voters,  S is the number of seats,

�
 is the number of candidates, and the “preference score” is

the Borda score) [1, pp. 284-286]:

The assessment will proceed by stages, all but the last of
which may be called “qualifying stages”: it will of course
terminate as soon as all  S  seats have been filled. We may
first describe the assessment process for the case when S is
2 or 3. At stage 1, the tellers will determine whether there are
any candidates listed first by more than 1/(S+1) of the total
number v of voters: if so, they immediately qualify for
election. If seats remain to be filled, the preference scores of
all candidates not qualifying at stage 1 will then be
calculated. At stage 2, the ballot papers will be scrutinized to
see if there is any pair of candidates, neither of whom
qualified at stage 1, to whom more than v/(S+1) voters are
solidly committed: if so, that member of the pair with the
higher preference score now qualifies for election. If seats
remain to be filled, the tellers will proceed to stage 3, at
which they will consider sets of three candidates, none of
whom has already qualified. If more than v/(S+1) voters are
solidly committed to any such trio, that one with the highest
preference score qualifies for election. In general, at the
qualifying stage i, the tellers determine whether, for any set
of i candidates none of whom has so far qualified, there are
more than v/(S+1) voters solidly committed to those
candidates; if so, the member of the set with the highest
preference score qualifies for election at stage i. If there still

remain seats to be filled after all the qualifying stages have
been completed, they will be filled at the final stage by those
candidates having the highest preference scores out of
those who have not yet qualified. ( . . . )

When  S  = 4, however, it may be thought that a body of
voters, amounting to more than two-fifths of the electorate
and solidly committed to two or more candidates, is entitled
to 2 of the 4 seats. To achieve this, the assessment process
must be made a little more complex. Stage 1 will proceed as
before, and, at stage 2, the same operation must be carried
out as described above. Before proceeding to stage 3,
however, the tellers must also consider every pair of
candidates of whom one qualified at stage 1 and the other
did not: if more than 2·v/(S+1) voters are solidly committed
to such a pair, that one who did not qualify at stage 1
qualifies at stage 2. (Note that, if more than 2·v/(S+1) voters
are solidly committed to two candidates, one of them must
qualify at stage 1.)  Likewise, at each qualifying stage i, the
tellers must ask, of every set of i candidates of whom at
most one has already qualified, whether more than 2·v/(S+1)
voters are solidly committed to those candidates. If so, and
none of them has previously qualified, the two with the
highest preference scores will now qualify; if one of them
qualified at an earlier stage, that one, of the rest, who has
the highest preference score will qualify at stage i. ( . . . )

In general, at stage i, the tellers must ask, of each set of
voters  solidly committed  to  i candidates,   what multiple of
v/(S+1) members it contains, up to i·v/(S+1). If it contains
more than v/(S+1) voters, at least one of the i candidates will
qualify for election; if it contains more than 2·v/(S+1), at least
two will qualify; if 3 ≤ i and it contains more than 3·v/(S+1), at
least three will; and so on, up to the case in which it contains
more than i·v/(S+1) voters, when all i candidates will qualify.

This description of QBS seems unnecessarily long. Usually,
Dummett offers a significantly shorter description. For
example, in his submission to the Jenkins Commission he
writes3:

The scruntineers can first mark as elected any candidate
ranked highest by a sufficiently large minority (one-sixth of
the voters in a five-member constituency, etc.). Then, having
calculated the Borda counts of all remaining candidates,
they can discover whether any set of from two to five
candidates receives solid support from a sufficiently large
minority: if so, that candidate in the set with the highest
Borda count is marked as to be elected. The remaining
seats will be filled by the candidates most generally
acceptable to the electorate as a whole, i.e. those with the
highest Borda counts.

In my opinion, a problem of the shorter description is that
readers could mistakenly believe that the order in which the
solid coalitions are considered at each stage and the
question at which stages the different candidates have
qualified were unimportant. However, example 1
demonstrates that they are decisive.
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Example 1 (v = 100;  S = 2; �  = 5):

29 DBCEA. 
17 ABDCE.
17 BADCE. 
17 CADBE. 
13 ACDBE. 
 7 CABDE.

The Borda scores are 243 for candidate A, 250 for candidate
B, 227 for candidate C, 251 for candidate D, and 29 for
candidate E. Table 1 lists all solid coalitions.  At stage 1, no
candidate qualifies for election. At stage 2, it is observed that
more than v/(S+1) voters are solidly committed to the
candidates A and B and that more than v/(S+1) voters are
solidly committed to the candidates A and C. When one uses
only the short description of QBS, then one could mistakenly
believe that there are two different possibilities how to
proceed resulting in two different sets of winners. First:
When one starts with the set A and B, candidate B qualifies
for election because he has a better Borda score than
candidate A. Then one has to consider the set A and C;
candidate A qualifies for election because he has a better
Borda score than candidate C. As no seats remain to be filled,
QBS terminates and the candidates A and B are the winners.
Second: When one starts with the set A and C, candidate A
qualifies for election because he has a better Borda score than
candidate C. Then one has to consider the set A and B;
however, as this set has already won one seat no additional
candidate qualifies at stage 2. At stage 3, one observes that

more than v/(S+1) voters are solidly committed to the
candidates A, B and D; however, as this set has already won
one seat no additional candidate qualifies at stage 3. At stage
4, one observes that more than 2·v/(S+1) voters are solidly
committed to the candidates A, B, C and D; as candidate D
has the best Borda score candidate D qualifies for election. As
no seats remain to be filled, QBS terminates and the
candidates A and D are the winners.

However, the long description in “Voting Procedures” states
clearly that when one has to decide how many additional seats
a given solid coalition gets at a given stage then one has to
consider as already qualified only those candidates who have
already qualified at strictly earlier stages. In example 1, when

one starts with the set A and C, candidate A qualifies for
election because he has a better Borda score than candidate C.
Then one has to consider the set A and B; as none of these
candidates has already qualified at a strictly earlier stage,
candidate B qualifies for election because he has a better
Borda score than candidate A.

In short, to guarantee that the result doesn' t depend on the
order in which the solid coalitions are considered at a given
stage, it is important that one looks only at those candidates
who have qualified at strictly earlier stages. For example,
suppose, at stage 10, one finds a set of 10 candidates such that
more than 5·v/(S+1) voters, but not more than 6·v/(S+1)
voters, are solidly committed to these 10 candidates. Suppose
that already 4 of these 10 candidates have qualified at stages
1-9. Then that candidate of this set who has the best Borda
score of all those candidates of this set who did not qualify at
stages 1-9 qualifies at stage 10 even if this set has already won
additional seats at stage 10.

At first sight, it isn' t clear whether the QBS winners can be
calculated in a polynomial runtime since there are 2�  possible
sets of candidates. However, a set of candidates has to be
taken into consideration only when at least one voter is
committed to this set. In so far as at each of the �  stages there
cannot be more than v sets of candidates such that at least one
voter is committed to this set, one has to take not more than
v·�  sets of candidates into consideration to calculate the QBS
winners. Therefore, a polynomial runtime is guaranteed.

When not each voter ranks all candidates, then Dummett' s
intention is met best when in each stage i those voters who
don' t strictly prefer all the candidates of some set of i
candidates to every other candidate are allocated to no solid
coalition.

Nicolaus Tideman writes about QBS [4]:

To avoid sequential eliminations, Michael Dummett suggested
a procedure in which a search would be made for solid
coalitions of a size that deserved representation, and when
such a coalition was found, an option (or options) that the
coalition supported would be selected. If the solid coalition
supported more than one option, the option (or options) with
the greatest “preference score” (Borda count) would be
selected. Preference scores would also be used to determine
which options would fill any positions not filled by options
supported by solid coalitions. I find Dummett's suggestion
unsatisfying. Suppose there are voters who would be
members of a solid coalition except that they included an
“extraneous” option, which is quickly eliminated, among their
top choices. These voters' nearly solid support for the coalition
counts for nothing, which seems to me inappropriate.

At first sight, it isn' t clear whether Tideman' s criticism is
feasible. It is imaginable that whenever there are “voters who
would be members of a solid coalition except that they
included an ‘extraneous’ option” there is also an STV method
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Table 1: Solid Coalitions in Example 1

one candidate two candidates three candidates four candidates

candidate No. candidates No. candidates No. candidates No.

A 30 A,B 34 A,B,C 7 A,B,C,D 71

B 17 A,C 37 A,B,D 34 A,B,C,E

C 24 A,D A,B,E A,B,D,E

D 29 A,E A,C,D 30 A,C,D,E

E B,C A,C,E B,C,D,E 29

B,D 29 A,D,E

B,E B,C,D 29

C,D B,C,E

C,E B,D,E

D,E C,D,E

100 100 100 100



(i.e. a method where surpluses of elected candidates are
transferred according to certain criteria to the next available
preference and where, when seats remain to be filled,
candidates are eliminated according to certain criteria and
their votes are transferred to the next available preference)
where this “nearly solid support for the coalition counts for
nothing”. If this is the case, then it is not appropriate to
criticize QBS for ignoring this “nearly solid support”.
However, example 2 demonstrates that there are really
situations where the QBS winners differ from the STV
winners independently of the STV method used.

Example 2 (v = 100;  S = 3; �  = 5):

40 ACDBE.  
39 BCDAE. 
11 DABEC.  
10 DBAEC.

The Borda scores are 252 for candidate A, 248 for candidate
B, 237 for candidate C, 242 for candidate D, and 21 for
candidate E. Table 2 lists all solid coalitions. At stage 1, the
candidates A and B qualify for election because both
candidates are preferred to every other candidate by more
than v/(S+1) voters each. At stage 2, it is observed that more
than v/(S+1) voters are solidly committed to the candidates
A and C and that more than v/(S+1) voters are solidly
committed to the candidates B and C; but as both sets of
candidates have already won one seat each, no additional
candidate qualifies for election at stage 2. At stage 3, it is
observed that more than v/(S+1) voters are solidly
committed to the candidates A, C, and D and that more than
v/(S+1) voters are solidly committed to the candidates B, C,
and D; but as both sets of candidates have already won one
seat each, no additional candidate qualifies for election at
stage 3.  At stage 4, it is observed that more than 3·v/(S+1)
voters are solidly committed to the candidates A, B, C, and
D; as this set has already won 2 seats, candidate D, the
candidate with the best Borda score of all those candidates

who haven' t yet qualified, qualifies for election. As no seats
remain to be filled, QBS terminates and the candidates A, B,
and D are the winners. However, STV methods necessarily
choose the candidates A, B, and C because, independently
of how surpluses are transferred, candidate C always
reaches the quota. In my opinion, example 2 questions
whether compliance with proportionality for solid coalitions

is sufficient for being a proportional preferential voting
method.

Dummett' s justification for his method is his claim that,
unlike traditional STV methods, QBS is less “quasi-
chaotic”. He writes 3:

The defect of STV is that it is quasi-chaotic, in the sense that
a small change in the preferences of just a few voters can
have a great effect on the final outcome. This is because it
may affect which candidate is eliminated at an early stage,
and thus which votes are redistributed, this then affecting all
subsequent stages of the assessment process.

However, in my opinion, example 3 demonstrates that also
QBS is “quasi-chaotic”. This is because a small change in
the preferences can affect which candidate qualifies at an
early stage, this then affecting all subsequent stages of the
assessment process.

Example 3 (v = 100;  S = 2; �  = 5):

26 BCAED.
24 DCEBA.
10 EADBC.
 8 ABCED. 
 7 EABDC. 
 7 EDBCA. 
 6 CDEBA. 
 6 DEBCA. 
 3 DCEAB. 
 2 EBADC. 
 1 DCBEA.

The Borda scores are 142 for candidate A, 216 for candidate
B, 215 for candidate C, 204 for candidate D, and 223 for
candidate E.  Table 3  lists  all  solid  coalitions.    At  stage
1, candidate  D  qualifies  for  election  because  more  than
v/(S+1) voters strictly prefer candidate D to every other
candidate. At stage 2, it is observed that more than v/(S+1)

voters are solidly committed to the candidates C and D; but
as this set of candidates has already won one seat, no
additional candidate of this set qualifies for election at stage
2. At stage 3, it is observed that more than v/(S+1) voters
are solidly committed to the candidates A, B, and C; as
none of these candidates has already qualified, candidate B,
the candidate with the best Borda score, qualifies for
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Table 2: Solid Coalitions in Example 2

one candidate two candidates three candidates four candidates

candidate No. candidates No. candidates No. candidates No.

A 40 A,B A,B,C A,B,C,D 79

B 39 A,C 40 A,B,D 21 A,B,C,E

C A,D 11 A,B,E A,B,D,E 21

D 21 A,E A,C,D 40 A,C,D,E

E B,C 39 A,C,E B,C,D,E

B,D 10 A,D,E

B,E B,C,D 39

C,D B,C,E

C,E B,D,E

D,E C,D,E

100 100 100 100

Table 3: Solid Coalitions in the original Example 3

one candidate two candidates three candidates four candidates

candidate No. candidates No. candidates No. candidates No.

A 8 A,B 8 A,B,C 34 A,B,C,D

B 26 A,C A,B,D A,B,C,E 34

C 6 A,D A,B,E 9 A,B,D,E 19

D 34 A,E 17 A,C,D A,C,D,E 3

E 26 B,C 26 A,C,E B,C,D,E 44

B,D A,D,E 10

B,E 2 B,C,D 1

C,D 34 B,C,E

C,E B,D,E 13

D,E 13 C,D,E 33

100 100 100 100



election. As no seats remain to be filled, QBS terminates and
the candidates B and D are the winners.

When a single DEBCA ballot is changed to BDECA, the
Borda scores are 142 for candidate A, 218 for candidate B,
215 for candidate C, 203 for candidate D, and 222 for
candidate E. Table 4 lists all solid coalitions for this modified
example. At stage 1, no candidate qualifies for election. At
stage 2, it is observed that more than v/(S+1) voters are solidly
committed to the candidates C and D; as candidate C has a
better Borda score, candidate C qualifies for election. At stage
3, it is observed that more than v/(S+1) voters are solidly
committed to the candidates A, B, and C; but as this set of
candidates has already won one seat, no additional candidate
of this set qualifies for election at stage 3. At stage 4, it is

observed that more than v/(S+1) voters are solidly committed
to the candidates A, B, C, and E and that more than v/(S+1)
voters are solidly committed to the candidates B, C, D, and E;
but as both sets have already won one seat each, no additional
candidates qualify for election at stage 4. At stage 5, candidate
E qualifies for election because he has the best Borda score of
all candidates who have not already qualified. Thus, by
ranking candidate B higher candidate B is changed from a
winner to a loser. By changing a single ballot the QBS
winners are changed from the candidates B and D to the
candidates C and E.
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Sequential STV - a new
version

I.D. Hill and Simon Gazeley

In Issue 2 of Voting matters, a system was reported called
Sequential STV 1, designed to overcome, at least to some
extent, the problem of premature exclusion of a candidate,
which occurs when the one who has the fewest votes at the
time is excluded, though due to receive many transfers later if
only that exclusion had not taken place.  That system has now
been improved and we report here on the new version.  One
particular result of the improvement is that, in the case of a
single seat, it is now certain to find the Condorcet winner if
there is one.  

The aim is to find a set of candidates of size n, where n is the
number of seats to be filled, such that any set of n+1
candidates consisting of those n and 1 more, will result in the
election of those n when an STV election is performed.  When
n=1 this reduces, of course, to the Condorcet rule.  In a small
election, or when n=1, it would be relatively easy and quick to
do a complete analysis to find if there is such a set.  The
challenge is to find a way of doing so that will work in a
reasonable time in large elections, where such a complete
analysis would be impracticable.  We recognise that the
meanings of  ‘a reasonable time’ and ‘ impracticable’ are open
to dispute, and that what is practicable will change as
computers continue to get faster.  

In the old version of Sequential STV, an initial STV count
divided the candidates into probables and others, but the
others were regarded as ‘ in a heap’ and all of equal status.
Consequently, if a challenger was successful, it would have
been contrary to the axioms of anonymity and neutrality2 to
make a change of probables until all the others had been
tested too, and that could lead to more than one challenger in
the next main stage.  In the new version the others are not put
in a heap but in a queue, where the order depends upon the
voting pattern.  It is then fair to implement any change of
probables at once, and the division of the method into main
stages and sub-stages is no longer necessary.

How it works − the easy part
An initial STV count is made but instead of dividing into
those elected and not elected, it classifies those who would
have been elected as probables, and puts the others into a
queue, in the reverse order of their exclusion in that initial
count, except that the runner-up is moved to last place as it is
already known that an initial challenge by that candidate will
not succeed.  Having found the probables and the order of the
queue, further rounds each consist of n+1 candidates, the n
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Table 4: Solid Coalitions in the modified Example 3

one candidate two candidates three candidates four candidates

candidate No. candidates No. candidates No. candidates No.

A 8 A,B 8 A,B,C 34 A,B,C,D

B 27 A,C A,B,D A,B,C,E 34

C 6 A,D A,B,E 9 A,B,D,E 19

D 33 A,E 17 A,C,D A,C,D,E 3

E 26 B,C 26 A,C,E B,C,D,E 44

B,D 1 A,D,E 10

B,E 2 B,C,D 1

C,D 34 B,C,E

C,E B,D,E 13

D,E 12 C,D,E 33

100 100 100 100



probables plus the head of the queue as challenger, for the n
seats.

It should be noted that, apart from the initial count, which is
only to get things started, all counts are of n+1 candidates
for n seats, so the ‘exclude the lowest’ rule, which is the
least satisfactory feature of STV, is not used.

If the challenger is not successful, the probables are
unchanged for the next round and the challenger moves to
the end of the queue, but a successful challenger at once
becomes a probable, while the beaten candidate is put to the
end of the queue.  The queue therefore changes its order as
time goes on but its order always depends upon the votes.  

The reordering of the queue during the count, by putting any
losing candidate to the end of the queue, is to make sure that
it cannot ever get into a state where, say, a set X are
probables, A, B and C are all near the top of the queue and
X+A beats X+B beats X+C beats X+A, while D is further
down and X+D has not been tested.  Putting losing
candidates to the end means that D must head the queue at
some point before A, B and C come round again.

This continues until either we get a complete run through
the queue without any challenger succeeding, in which case
we have a solution of the type that we are seeking, or we fall
into a Condorcet-style loop.  In the latter case, we have to
enter the more difficult part, set out below, but it should be
emphasised that in real elections, as distinct from specially
devised test cases, that rarely happens.    

How it works − the more difficult part
To decide that a loop has been found, a set that has been
seen before must recur as the probables.  If the queue is in
the same order as before then a loop is certain and action
must be taken at once.  If, however, a set recurs but the
queue is in a different order, it is conceivable though
unlikely that something different, that breaks the loop, could
happen.  So, in that case, a second chance is given and the
counting continues but, if the same set recurs yet again, a
loop is assumed and action taken.

In either event the action is the same, to exclude all
candidates who have never been a probable since the last
restart (which means the start where no actual restart has
occurred) and then restart from the beginning except that the
existing probables and queue are retained instead of the
initial STV count.

If there is no candidate who can be excluded, then a special
procedure is used, in which any candidate who has always
been a probable since the last restart is classified as a
certainty and any other remaining candidate as a contender.
From each possible set of n+1 candidates that includes all
the certainties, an election for n seats is conducted.  Since, at
this point, most of the original candidates will be either

excluded or certainties, there is no need to fear an
astronomical number of tests needing to be made.

At the end of each test, the one candidate who has not
reached the quota is assigned a fractional value calculated
by dividing that candidate' s votes by the quota.  When all
the tests have been done, the average of these fractions is
calculated for each candidate.  Additionally candidates are
awarded one point for each contest in which they did reach
the quota.  It is these complete points that mainly decide,
the average fraction being really only a tie-breaker.  

 The contender with the highest score is then reclassified as
a certainty and, if the number of certainties is less than the
number of seats, the special procedure is repeated with one
contender fewer and one seat fewer to fill.

While this process may look complicated, it should be
remembered that, on most occasions, only the part called
‘the easy part’ above is used, while the complications are
used to sort out a Condorcet paradox if it occurs.

Programming
Where loops occur it will often be found that a particular set
of candidates is being tested more than once.  Storing
results and accessing them as necessary would obviously be
much quicker than repeating the same STV count many
times.  However, since most voting patterns do not have
such loops, such storing of results would usually be
unproductive extra work.  For the present, the system has
been programmed with repetition rather than storing.

The name ‘Sequential STV’
From now on the name Sequential STV will be used to
mean this new version.

A random version
The initial STV count, to choose the initial probables and to
determine the initial order of the queue, turns out to be not
very important, in that an alternative version that selects the
initial probables at random, and orders the initial queue at
random, nearly always reaches the same eventual answer.  It
is fun to watch it getting from an initial nonsense selection
to end up at the correct solution, but this version should not
be used in practice because of rare cases where it can get a
different result from that given by starting with an STV
count and, where  this is so, we suspect that it would usually
be a less good result.

An example of such a rare case has been given previously3

with a fictitious set of votes, having 4 candidates for 2
places, in which testing ABC elects AB and testing ABD
elects AB, yet testing ACD elects CD and testing BCD
elects CD.  In that example, Sequential STV elects AB
(which is, in fact, the better choice) whereas the random
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version has a 50-50 chance of finding either AB or CD.  Such
an example seems unlikely ever to occur in reality but the fact
that it is possible means that it is better to guard against it by
not using the random version. 

Examples
With 5 candidates for 2 seats, consider the voting pattern

        104 ABCD
        103 BCDA
        102 CDBA
        101 DBCA
          3 EABCD
          3 EBCDA
          3 ECDBA
          3 EDCBA

Plain STV elects BC.  Sequential STV chooses BC as
probables, then tests BCD, BCE and BCA in that order.  BC
win each time and are elected.  

Suppose, however, that the voters for A, B, C and D had all
put in E as second preference to give (the example used in
reference 1). 

        104 AEBCD
        103 BECDA
        102 CEDBA
        101 DEBCA
          3 EABCD
          3 EBCDA
          3 ECDBA
          3 EDCBA

This evidently makes E a very much stronger candidate, for if
any one of A, B, C or D had not stood, E would have been the
first elected, but plain STV takes no notice, electing BC just
as before.  Sequential STV chooses BC as probables but then
tests BCD, where BC stay as probables and D goes to the end
of the queue, followed by BCE where BE become the new
probables and C goes to the end of the queue.  It then tests
BEA and BED, BE winning each time.  There is no need to
test BEC again as that result is already known, so BE are
elected.

Real voting patterns
In 43 real elections held on file, the sequential method merely
confirmed the original result in 38 of them, and replaced just
1 candidate in 3 more of them.  In only 2 cases were loops
found, making it necessary to do more than the easy part of
the method.

Timings
Some timings were made on an 11-year old PC with a 386
chip.  In a real election with 10 candidates for 6 seats and 841
voters, simple STV took 11 seconds.  Sequential STV made
no change in those elected and took 23 seconds.

In a much more difficult case with 30 candidates for 15 seats
and 563 voters, simple STV took 1 minute 6 seconds.
Sequential STV found 1 candidate to be definitely replaced
and 3 others who were in a loop for the final seat.  It took a
total of 18 minutes 30 seconds.

Should it be used?
With this new version, should it be recommended for practical
use?  That depends upon whether the user is willing to
abandon the principle that it should be impossible for a voter
to upset earlier preferences by using later preferences.  Many
people regard that principle as very important, but reducing
the frequency of premature exclusions is important too.  We
know that it is impossible to devise a perfect scheme, and it is
all a question of which faults are the most important to avoid.   

In considering this, we need to take into account, among other
things, that the true aim of an election should not be solely to
match seats as well as possible to votes, but to match seats to
the voters’ wishes.  Since we do not know the wishes we must
use the votes as a substitute, but that makes it essential that
the votes should match the wishes as far as possible.  That, in
turn, makes it desirable that the voters should not be tempted
to vote tactically.   

They would not be so tempted if they felt confident that later
preferences were as likely to help earlier ones as to harm
them, and if they could not predict the effect one way or the
other.  At present, we see no reason to doubt that these
requirements are met.

All things considered, we believe that Sequential STV is
worthy of serious consideration.  

Comparison with STV(EES) and with
CPO-STV?
STV(EES) 4 was designed to meet much the same aims as
Sequential STV, and also has the same disadvantage that later
preferences can upset earlier ones.  A comparison of the two
would be interesting.  As at present defined, however,
STV(EES) is so slow that a comparison is not easy.  For an
electoral method to be slow should not be considered too
much of a disadvantage for real elections if it can be shown to
get better results, but it is certainly a disadvantage for research
purposes where a large number of counts of different data
may be required within a reasonable time.
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Using the examples above, STV(EES) elects BC from the
first but BE from the second, just as Sequential STV does.  

In the example given in section 6 of reference 4, AC were
elected by STV(EES), which was not wrong as there was a
paradox  in the votes, but the paper admitted that ‘I would
still have preferred AB to be the winning set in this case’, so
it may be worth noting that Sequential STV does indeed
elect AB.

CPO-STV 5, 6 was designed to search for an outcome that is
globally optimum rather than merely locally stable.  Again a
comparison would be interesting.  
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